19 research outputs found

    Rheological Model for Wood

    Full text link
    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.Comment: 37 pages, 13 figures, 10 table

    A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue

    No full text
    Introduction: Much attention has been paid to the idea of cell therapy using stem cells from different sources of the body. Fat-derived stem cells that are called adipose derived stem cells (ADSCs) from stromal vascular fraction (SVF) are the subject of many studies in several cell therapy clinical trials. Despite production of some GMP-grade enzymes to isolate SVF for clinical trials, there are critical conditions like inconsistency in lot-to-lot enzyme activity, endotoxin residues, other protease activities and cleavage of some cell surface markers which significantly narrow the options. So we decided to develop a new method via sonication cavitation to homogenize fat tissue and disrupt partially adipose cells to obtain SVF and finally ADSCs at a minimum of time and expenses. Methods: The fat tissue was chopped in a sterile condition by a blender mixer and then sonicated for 2 s before centrifugation. The next steps were performed as the regular methods of SVF harvesting, and then it was characterized using flow cytometry. Results: Analysis of the surface markers of the cells revealed similar sets of surface antigens. The cells showed slightly high expression of CD34, CD73 and CD105. The differentiation capacity of these cells indicates that multipotent properties of the cells are not compromised after sonication. But we had the less osteogenic potential of cells when compared with the enzymatic method. Conclusion: The current protocol based on the sonication-mediated cavitation is a rapid, safe and cost-effective method, which is proposed for isolation of SVF and of course ADSCs cultures in a large scale for the clinical trials or therapeutic purposes

    Rejuvenation of facial skin and improvement in the dermal architecture by transplantation of autologous stromal vascular fraction: a clinical study

    Get PDF
    Introduction: The rejuvenation characteristics of fat tissue grafting has been established for many years. Recently it has been shown that stromal vascular fraction (SVF) of fat tissue contributes to its rejuvenation properties. As the SVF is a minimal processed cell population (based on FDA guidance), therefore it is a suitable cell therapy for skin rejuvenation. This clinical trial was aimed to evaluate the ultrastructural improvement of aging skin in the facial nasolabial region after transplantation of autologous SVF. Methods: Our study was conducted in 16 patients aged between 38 and 56 years old that were interested in face lifting at first. All of the cases underwent the lipoaspiration procedure from the abdomen for sampling of fat tissue. Quickly, the SVF was harvested from 100 mL of harvested fat tissue and then transplanted at dose of 2.0×107 nucleated cells in each nasolabial fold. The changes in the skin were evaluated using Visioface scanner, skin-scanner DUB, Visioline, and Cutometer with multi probe adopter. Results: By administration of autologous SVF, the elasticity and density of skin were improved significantly. There were no changes in the epidermis density in scanner results, but we noticed a significant increase in the dermis density and also its thickness with enrichment in the vascular bed of the hypodermis. The score of Visioface scanner showed slight changes in wrinkle scores. The endothelial cells and mesenchymal progenitors from the SVF were found to chang the architecture of the skin slightly, but there was not obvious phenotypic changes in the nasolabial grooves. Conclusion: The current clinical trial showed the modification of dermis region and its microvascular bed, but no changes in the density of the epidermis. Our data represent the rejuvenation process of facial skin by improving the dermal architecture

    Rejuvenation of facial skin and improvement in the dermal architecture by transplantation of autologous stromal vascular fraction: a clinical study

    No full text
    Introduction: The rejuvenation characteristics of fat tissue grafting has been established for many years. Recently it has been shown that stromal vascular fraction (SVF) of fat tissue contributes to its rejuvenation properties. As the SVF is a minimal processed cell population (based on FDA guidance), therefore it is a suitable cell therapy for skin rejuvenation. This clinical trial was aimed to evaluate the ultrastructural improvement of aging skin in the facial nasolabial region after transplantation of autologous SVF. Methods: Our study was conducted in 16 patients aged between 38 and 56 years old that were interested in face lifting at first. All of the cases underwent the lipoaspiration procedure from the abdomen for sampling of fat tissue. Quickly, the SVF was harvested from 100 mL of harvested fat tissue and then transplanted at dose of 2.0×107 nucleated cells in each nasolabial fold. The changes in the skin were evaluated using Visioface scanner, skin-scanner DUB, Visioline, and Cutometer with multi probe adopter. Results: By administration of autologous SVF, the elasticity and density of skin were improved significantly. There were no changes in the epidermis density in scanner results, but we noticed a significant increase in the dermis density and also its thickness with enrichment in the vascular bed of the hypodermis. The score of Visioface scanner showed slight changes in wrinkle scores. The endothelial cells and mesenchymal progenitors from the SVF were found to chang the architecture of the skin slightly, but there was not obvious phenotypic changes in the nasolabial grooves. Conclusion: The current clinical trial showed the modification of dermis region and its microvascular bed, but no changes in the density of the epidermis. Our data represent the rejuvenation process of facial skin by improving the dermal architecture

    Moisture-induced damage evolution in laminated beech

    No full text
    In a combined experimental, numerical, and analytical approach, damage onset and propagation in unidirectional and cross-laminated samples from European beech due to climatic changes are studied. The inter- and intra-laminar damage evolution is characterized for various configurations, adhesively bonded by three structural adhesive systems. Different lamella thicknesses are studied to capture size effects. Typical situations are simulated by means of a comprehensive moisture-dependent nonlinear rheological finite element model for wood with the capability to capture delaminations. The simulations give insight into the role of different strain components such as viscoelastic, mechano-sorptive, plastic, and hygro-elastic deformations under changing moisture content in progressive damage and delamination. The stress buildup under cyclic hygric loading was shown, resulting in hygro-fatigue. It was demonstrated that a modified analytical micro-mechanics of damage model, originally developed for cross-ply laminates, can be employed to describe the problem of moisture-induced damage in beech lamellae.ISSN:0043-7719ISSN:1432-522

    Application of two intelligent systems in predicting environmental impacts of quarry blasting

    No full text
    Blasting, as the most frequently used method for hard rock fragmentation, is a hazardous aspect in mining industries. These operations produce several undesirable environmental impacts such as ground vibration, air-overpressure (AOp), and flyrock in the nearby environments. These environmental impacts may cause injury to human and damage to structures, groundwater, and ecology of the nearby area. This paper is aimed to predict the blasting environmental impacts in granite quarry sites through two intelligent systems, namely artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 166 blasting operations at four granite quarry sites in Malaysia were investigated and the values of peak particle velocity (PPV), AOp, and flyrock were precisely recorded in each blasting operation. Considering some model performance indices including coefficient of determination (R2), value account for (VAF), and root mean square error (RMSE), and also using simple ranking procedure, the best models for prediction of PPV, AOp, and flyrock were selected. The results demonstrated that the ANFIS models yield higher performance capacity compared to ANN models. In the case of testing datasets, the R2 values of 0.939, 0.947, and 0.959 for prediction of PPV, AOp, and flyrock, respectively, suggest the superiority of the ANFIS technique, while in predicting PPV, AOp, and flyrock using ANN technique, these values are 0.771, 0.864, and 0.834, respectively

    Report of a phase 1 clinical trial for safety assessment of human placental mesenchymal stem cells therapy in patients with critical limb ischemia (CLI)

    No full text
    Abstract Background Critical limb ischemia (CLI) is associated with increased risk of tissue loss, leading to significant morbidity and mortality. Therapeutic angiogenesis using cell-based treatments, notably mesenchymal stem cells (MSCs), is essential for enhancing blood flow to ischemic areas in subjects suffering from CLI. The objective of this study was to evaluate the feasibility of using placenta-derived mesenchymal stem cells (P-MSCs) in patients with CLI. Methods This phase I dose-escalation study investigated P-MSCs in nine CLI patients who were enrolled into each of the two dosage groups (20 × 106 and 60 × 106 cells), delivered intramuscularly twice, two months apart. The incidence of treatment-related adverse events was the primary endpoint. The decrease in inflammatory cytokines, improvement in the ankle-brachial pressure index (ABI), maximum walking distance, vascular collateralization, alleviation of rest pain, healing of ulceration, and avoidance of major amputation in the target leg were the efficacy outcomes. Results All dosages of P-MSCs, including the highest tested dose of 60 × 106 cells, were well tolerated. During the 6-month follow-up period, there was a statistically significant decrease in IL-1 and IFN-γ serum levels following P-MSC treatment. The blood lymphocyte profile of participants with CLI did not significantly differ, suggesting that the injection of allogeneic cells did not cause T-cell proliferation in vivo. We found clinically substantial improvement in rest pain, ulcer healing, and maximum walking distance after P-MSC implantation. In patients with CLI, we performed minor amputations rather than major amputations. Angiography was unable to demonstrate new small vessels formation significantly. Conclusion The observations from this phase I clinical study indicate that intramuscular administration of P-MSCs is considered safe and well tolerated and may dramatically improve physical performance and minimize inflammatory conditions in patients with CLI. Trial registration: IRCT, IRCT20210221050446N1. Registered May 09, 2021
    corecore